\qquad

The Water Cycle and Oxygen Isotopes

The water cycle is a key part of understanding Earth's climate. One process in the water cycle is evaporation. Evaporation is where molecules of $\mathrm{H}_{2} \mathrm{O}$ leave the liquid state becoming molecules of $\mathrm{H}_{2} \mathrm{O}$ vapor or gas in the air above. In the gaseous state, $\mathrm{H}_{2} \mathrm{O}$ can then move through the atmosphere.

Water, of course, contains both hydrogen and oxygen. Oxygen is one of the most significant keys to deciphering past climates. Oxygen comes in heavy and light varieties, or isotopes, which are useful for
 paleoclimate research. Like all elements, oxygen is made up of a nucleus of protons and neutrons, surrounded by a cloud of electrons. All oxygen atoms have 8 protons, but the nucleus might contain 8, 9, or 10 neutrons. "Light" oxygen-16, with 8 protons and 8 neutrons, is the most common isotope found in nature, followed by much lesser amounts of "heavy" oxygen--18 with 8 protons and 10 neutrons. ${ }^{1}$ Water, therefore, will contain hydrogen as well as either oxygen -16 or oxygen -18 (shown as $\mathrm{H}_{2}{ }^{16} \mathrm{O}$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ respectively in the images on page 2).

So not all molecules of water are created equal - that's an important point. Some molecules have more mass than others. The following demonstration will illustrate this point. The demonstration simulates evaporation for $\mathrm{H}_{2} \mathrm{O}$ molecules with different masses.

Demonstration https://www.youtube.com/watch?v=fyW1E9|JMx4
 Watch the linked video.

The teacher in the video has a box fan pointing upward with a clear plexiglass container sitting on top of the fan. Inside the plexiglass container are styrofoam balls which represent molecules of water that contain isotopes of oxygen. Then answer the questions below.

1. In what way are the styrofoam balls the same and different?
2. What do the styrofoam balls represent?
3. What do you think that the plexiglass container represents?
4. What do you think that the fan represents?

In the video the teacher turns the fan on to simulate the evaporation of water. Watch the styrofoam balls closely and answer the following questions.
5. Which styrofoam balls seem to be rising the highest?
6. Which styrofoam balls tend to stay lower?
7. Come up with a hypothesis that will explain the observed motion of the styrofoam balls (use the words mass and energy within your hypothesis).

Heavy Water

The demonstration above illustrates the difference in the evaporation of the two types of water molecules $\left(\mathrm{H}_{2}{ }^{16} \mathrm{O}\right.$ and $\left.\mathrm{H}_{2}{ }^{18} \mathrm{O}\right)$ in the water cycle. Transport of these molecules out of the ocean (plexiglass) shows movement in the water cycle.
But why were there two types of particles to represent $\mathrm{H}_{2} \mathrm{O}$ molecules ? You should have seen that they were raised above the fan at different heights ($\mathrm{H}_{2}{ }^{16} \mathrm{O}$ higher and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ lower). The diagram to the right shows $\mathrm{H}_{2} \mathrm{O}$ molecules A and B . Look at how they differ. The difference isn't big, but it's important in the water cycle.

Water Molecule A

 Water Molecule B

[^0]Molecule A has an oxygen with a mass $=16$ coming from 8 protons and 8 neutrons. With two hydrogens, the total mass of $\mathrm{H} 2{ }^{16} \mathrm{O}$ is 18 . Molecule B has an oxygen with a mass $=18$ from 8 protons and 10 neutrons. Adding two hydrogens, the mass of $\mathrm{H} 2{ }^{18} \mathrm{O}$ is 20 . These two molecules have different masses because ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ are two isotopes of oxygen. (Remember: an isotope is an element that has the same number of protons, but a different number of neutrons).
Because of their different masses, $\mathrm{H}_{2}{ }^{16} \mathrm{O}$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ behave differently in the water cycle.
As water condenses and precipitates out of the atmosphere it can be incorporated into existing ice sheets. Currently, the major ice sheets exist in the polar regions. At times in the past, ice sheets have also existed across the northern hemisphere. They covered much of the United States, all of Canada, and most of northern Europe. Existing ice sheets provide a continuous record of atmospheric conditions dating back as far as 1.5 million years. The water that comprises the frozen ice sheets contains a mixture of light and heavy isotopes. As water evaporates from the oceans, more of this water tends to be the low mass molecule of water $\left(\mathrm{H} 2{ }^{16} \mathrm{O}\right)$. Over time, the precipitation that falls oyer the poles becomes part of the ice sheets. Thus, the ice sheets will have relatively more $\mathrm{H} 2{ }^{16} \mathrm{O}$ than $\mathrm{H} 2 \underline{2}{ }^{18} \mathrm{O}$.

Heavy Water

8. How is heavy water $\left(\mathrm{H}_{2}{ }^{18} \mathrm{O}\right)$ different from light water $\left(\mathrm{H}_{2}{ }^{16} \mathrm{O}\right)$? Be specific.
9. The different masses of $\mathrm{H}_{2}{ }^{16} \mathrm{O}$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ behave differently in the water cycle.
a. Which one do you think preferentially evaporates?
b. Which one do you think tends to remain in the ocean?
10. Why would a sample of water vapor taken from above the ocean contain a higher ratio of $\mathrm{H}_{2}{ }^{16} \mathrm{O}$ compared to $\mathrm{H}_{2}{ }^{18} \mathrm{O}$? Inlude the words heat energy within your explanation. (Hint: think about the styrofoam balls in the demonstration).

Condensation and Precipitation

As air rises in the atmosphere and cools, the water vapor condenses and falls as precipitation. On a global scale, warm air rises at the equator and circulates towards the poles. Because it is heavier, $\mathrm{H} 2{ }^{18} \mathrm{O}$ will tend to condense first and the ratio of $\mathrm{H} 2{ }^{18} \mathrm{O}$ to $\mathrm{H}_{2}{ }^{16} \mathrm{O}$ will be greater in rain that falls at lower latitudes. As the moist air mass continues to circulate towards the poles, the precipitation that falls will become increasingly depleted of $\mathrm{H} 2{ }^{18} \mathrm{O}$ molecules. However, changes in global temperatures impact how far $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ can travel from the equator before precipitating out as moisture.

Let's focus for a moment on the precipitation of the different isotopes of water in the atmosphere. During periods of warmer global temperatures there is more heat energy in the atmosphere. This allows heavy water $\left(\mathrm{H}_{2}{ }^{18} \mathrm{O}\right)$ to stay in the gaseous phase longer and travel farther from the equator before precipitating out. Thus, during times of higher global temperatures, the ratio of heavy water to light water $(\underline{H} \underline{2} \underline{16} \mathrm{O})$ found in precipitation that falls at the poles changes with a higher percentage of heavy water being present. Scientists have an indicator for the relative amount of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ in water. It is $\delta^{18} \mathrm{O}$, and is pronounced "delta.-18.. O ". The delta, δ, stands for "change," and the ${ }^{18} \mathrm{O}$ represents the oxygen- 18 in $\mathrm{H} 2{ }^{18} \mathrm{O}$. So, in ice core samples taken at the poles, a higher ratio of heavy water to light water indicates higher average global temperatures. The following figure illustrates this concept:

The concentration of ${ }^{18} \mathrm{O}$ in precipitation decreases with temperature. This graph shows the difference in ${ }^{18} O$ concentration in annual precipitation compared to the average annual temperature at each site. The coldest sites, in locations such as Antarctica and Greenland, have about 5 percent less ${ }^{18} O$ than ocean water. (Graph adapted from Jouzel et. al., 1994)

Scientists have performed global atmospheric measurement that allow them to correlate temperature to the ratio of heavy water compared to light water. This laboratory data is then used as a standard to infer past temperatures based on the ratio of isotopes found in ice cores.

Condensation and Precipitation

11. During a period of warmer temperatures, would you expect precipitation that falls over the poles to contain more or less heavy water $\left(\mathrm{H}_{2}{ }^{18} \mathrm{O}\right)$ compared to light water $\left(\mathrm{H}_{2}{ }^{16} \mathrm{O}\right)$ than during an ice age? Explain.
12. Refer to the $\delta^{18} \mathrm{O}$ vs. temperature graph above. What is the relationship that exists between $\delta^{18} \mathrm{O}$ and temperature?

Using Proxy Data: Ice Cores and Past Temperatures

Background Information: In this investigation, you will be working with oxygen isotope data collected from twenty sites in Greenland by paleoclimatologists that has been statistically averaged through a process known as Principal Component (PC) analysis. You will be creating a graph of this data compared to average temperature data collected in that region. Both the ice core and temperature data represent conditions in the winter season (November-April) for the years 1829-1970.

Procedures

1. Copy and paste the data set provided on the next page onto Excel. Create a straight marked scatter chart of temperature and time, where temperature is the dependent variable. Make sure to give the graph a title and properly label each axis. Copy and paste your graph in the space below:
2. Examine your completed graph of temperature vs. time to see if there are predictable or repeatable patterns.
3. Now insert a trendline. Does the trendline indicate a long.-term pattern in the temperature vs. time data? Explain.
4. Create a second straight marked scatter chart using PC1 (Oxygen-18 isotope ratios) and time and add a trendline. Make sure that PC1 is your dependent variable. Copy and paste your graph in the space below:
5. Is there a long-term pattern in the PC 1 vs. time data? Explain.
6. Now look at both graphs. What similarities and/or differences do you see in temperature and Oxygen-18 ratios in the ice core data over time? Does the data indicate that a relationship exists between temperature and Oxygen-18 ratios in the ice cores? Remember, the smaller the PC1 value, the lower the ratio of Oxygen- 18 to Oxygen-16.
7. Finally, create a marked scatter chart using PC1 data as your dependent variable and temperature as your independent variable. Insert a trendline with the R^{2} value. To see if a correlation exists, look at the R^{2} value. The closer this value is to 1 , the stronger the correlation between PC1 and temperature. If the R 2 value is closer to 0 , that means the 2 variables are not affecting each other. Copy and paste your graph in the space below:

Analysis Questions

1. Look at the first two line charts that you created.
a) What 3 years had the lowest recorded average temperatures?
b) What 3 years had the lowest PC1 values?
c) Based on your answers to 1 a and 1 b and the observed trendlines for both charts, does there seem to be a relationship between temperature and the ratio of Oxygen- 18 to Oxygen-16 in the ice sample (again, remember that the lower the PC1 value, the lower the Oxygen-18 to Oxygen-16 ratio)?
2. Look at the scatter chart you created.
a) As temperatures increase, what happens to the ratio of Oxygen-18 to Oxygen-16?
b) Explain why temperature would have an impact on the ratio of Oxygen--18 to Oxygen-16 present in the ice core samples.

Greenland Ice Core Data 1829-1970 with Temperarture \& Oxygen Isotope Ratios (as PC1 of the $8018-018 / 016$ ratio)		
Year	Average Temperature (${ }^{\circ} \mathrm{C}$)	PC1(8018-018/016 Ratio)
1970	-6.4	2.277
1969	-5.0	2.928
1968	-6.9	-0.886
1967	-7.7	-0.271
1966	-5.5	1.715
1965	-5.1	3.630
1964	-5.6	2.682
1963	-4.3	3.092
1962	-4.9	0.618
1961	-7.2	2.096
1960	-6.7	4.183
1959	-6.2	1.336
1958	-6.4	-0.662
1957	-8.1	-2.041
1956	-5.7	0.643
1955	-7.1	-0.506
1954	-7.9	0.846
1953	-5.2	3.421
1952	-7.4	-1.570
1951	-7.2	0.568
1950	-7.8	-0.539
1949	-10.0	-1.425
1948	-6.2	2.647
1947	-2.8	5.455
1946	-5.4	5.387
1945	-8.2	-1.803
1944	-6.6	-0.959
1943	-5.9	-0.361
1942	-6.0	3.396
1941	-3.6	0.766
1940	-4.4	5.541
1939	-7.9	0.967
1938	-8.2	1.240
1937	-7.7	-1.732
1936	-3.9	0.788

1935	-5.8	2.675
1934	-6.7	3.906
1933	-7.7	0.482
1932	-5.4	2.819
1931	-7.3	-0.246
1930	-6.4	-0.388
1929	-2.8	3.827
1928	-5.6	-0.473
1927	-6.8	-2.741
1926	-4.9	1.875
1925	-9.4	-1.588
1924	-5.5	-2.249
1923	-6.6	1.420
1922	-9.2	-2.176
1921	-10.7	-2.401
1920	-8.7	-1.264
1919	-9.2	-3.102
1918	-10.2	-2.353
1917	-5.1	5.574
1916	-5.3	3.482
1915	-9.9	-3.439
1914	-10.9	-1.457
1913	-8.0	-1.973
1912	-7.1	1.850
1911	-9.3	-0.271
1910	-10.8	-2.106
1909	-7.5	2.325
1908	-8.6	-0.434
1907	-11.3	-5.378
1906	-10.6	-5.028
1905	-7.2	-2.887
1904	-9.2	-0.371
1903	-10.3	-1.585
1902	-7.4	-0.635
1901	-7.4	0.973
1900	-7.5	-4.145
1899	-10.1	-0.390
1898	-11.1	-2.485
1897	-10.4	-0.128
1896	-10.9	1.045
1895	-6.6	2.300
1894	-12.0	-1.262
1893	-7.3	1.184
1892	-8.1	0.381

1891	-10.4	-1.183
1890	-10.3	-3.772
1889	-9.0	-0.478
1888	-6.8	2.693
1887	-11.3	-0.261
1886	-10.1	-0.943
1885	-8.7	-1.642
1884	-12.8	-1.481
1883	-9.6	-2.253
1882	-11.6	-2.797
1881	-5.9	1.666
1880	-9.8	-0.357
1879	-4.6	3.038
1878	-7.7	-1.080
1877	-7.2	-0.371
1876	-7.2	2.939
1875	-6.6	1.464
1874	-8.9	-2.949
1873	-7.9	0.304
1872	-4.1	1.812
1871	-6.7	2.183
1870	-9.6	-1.419
1869	-9.6	-2.365
1868	-9.7	0.309
1867	-9.2	-0.436
1866	-10.2	-1.077
1865	-7.6	0.784
1864	-11.3	-5.969
1863	-14.1	-4.336
1862	-9.7	-0.671
1861	-9.5	-0.276
1860	-6.9	-1.009
1859	-9.8	-0.052
1858	-9.0	-0.767
1857	-7.6	-1.937
1856	-4.1	3.449
1855	-8.2	0.382
1854	-10.3	-0.554
1853	-6.7	3.191
1852	-7.3	3.038
1851	-7.2	1.697
1850	-8.2	0.373
1849	-10.0	-0.661
1848	-9.9	-1.731

1847	-2.7	3.710
1846	-7.8	-1.284
1845	-8.4	-0.707
1844	-12.5	-2.076
1843	-7.5	1.904
1842	-10.3	-1.201
1841	-8.9	1.669
1840	-8.0	-0.667
1839	-10.3	-1.963
1838	-11.9	1.857
1837	-11.8	-4.312
1836	-8.4	-1.907
1835	-11.7	-5.998
1834	-11.3	-2.981
1833	-11.1	-3.312
1832	-10.6	1.682
1831	-6.9	2.133
1830	-7.1	1.735
1829	-5.7	1.853

[^0]: 1 source:
 http://earthobservatory.nasa.gov/Features/Paleoclimatology_OxygenBalance/

